On the Relation Between the Velocity Coefficient

and Boundary Value for Solutions of the
One-dimensional Wave Equation

R. Michael Lewis
and
William W. Symes
May, 1990
(revised April 1991)

TR90-12



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
MAY 1990 2. REPORT TYPE 00-00-1990 to 00-00-1990
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

On the Relation Between the Velocity Coefficient and Boundary Value £b. GRANT NUMBER

for Solutions of the One-Dimensional Wave Equation
5¢c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Computational and Applied M athematics Department ,Rice REPORT NUMBER
University,6100 Main Street M S 134,Houston, T X,77005-1892

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 35
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



ON THE RELATION BETWEEN THE VELOCITY COEFFICIENT
AND BOUNDARY VALUE FOR SOLUTIONS OF THE
ONE-DIMENSIONAL WAVE EQUATION =

R. MICHAEL LEWIS AND WILLIAM W. SYMES 1

Abstract. The one-dimensional acoustic wave equation is a simple model of wave propagation
in layered media. As such, it is used in theoretical seismology to study the relation between sound
velocity and the surface response or seismogram (boundary value) as a simple instance of the reflection
seismology problem.

Questions about the nature of the dependence of boundary values on the velocity coefficient in the
wave equation arise naturally in this context, particularly in connection with perturbational techniques.
We study the dependence on the velocity coefficient of boundary values for solutions of the one-
dimensional wave equation. We present estimates for both the Lipschitz continuity and the linearization
error for the map between velocity coefficient and boundary value. In particular, we show that this
relation is Lipschitz continuous for velocities in H? and differentiable for velocities in H3. We also
discuss the anomalous smoothness of this map in “oscillatory” directions, which helps explain a key
idea in reflection seismology.

Key Words. wave propagation, one-dimensional acoustics, inverse problems, stability

AMS(MOS) subject classification. Primary 35L05, secondary 35R30, 73D99, 86A15

1. Introduction. Various wave propagation problems in a plane-stratified half-
space {z > 0} can be modeled by the one-dimensional acoustic wave equation:
1 2
(1) -c—%attu - Bzzu =0.
In this model the mechanical properties of the medium are described by the sound
velocity ¢(z).
We impose the boundary and initial conditions

(2) 9.u(0,8) = f(t)
(3) u(z,t) = 0 t <0,

where the Neumann datum f vanishes for |¢| large so that the disturbance is transient.
The velocity coefficient ¢ is a strictly positive function and for the moment is assumed
to be C'*.

If the datum f is C'*° then we can sensibly define a map Fy: C*®° — C* by

(4) Fy: e 0w(0,1).

If u represents displacement, then the map F} relates the velocity coefficient and the
surface velocity. In the context of the reflection seismology method in oil exploration,

* Research sponsored by AFOSR-89-0363. A version of this work appeared in R. M. Lewis’ doctoral
thesis, written under the supervision of W. W. Symes in the Department of Mathematical Sciences,
Rice University.

! Department of Mathematical Sciences, Rice University, Houston, Texas, 77251-1892.
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R. M. Lewis and W. W. Symes — Solutions of the wave equation 2

Ff represents the relation between the surface observations (“seismogram”) and the
unknown subterranean material properties.

The conditions (1), (2), and (3) form a well-posed initial-boundary-value problem in
the half-space {z > 0} for the distribution datum f = —§ since the velocity coefficient is
sufficiently smooth. However, in this case we qualify the definition of the map between
velocity and boundary value given by (4) to account for the absence of smoothness of
f = —6. The progressing wave expansion for u (see Section 2.3) shows that J;u has a
well-defined trace

0u(0,t) = constant - 6(t) + v(¢),
where v € C*°[0,T] for any T' > 0. We define the map F' to be
(5) F:c—o(?).
Since for smoother choices of f we have

Fj(c) = f * (constant - § + F(c)),

properties for Fy follow from those of F' via well-understood properties of convolution.
Accordingly, we restrict attention to the case f = —§, the so-called impulse response
problem.

To this point we have assumed that the velocity coefficient ¢ is C*°. Our goal in
this paper is to establish weaker regularity conditions on ¢ under which F' extends to a
continuous map and a differentiable map. Our main results are that

(a) F is Lipschitz continuous as a map H? — L%, and

(b) F is differentiable as a map H® — L? and the derivative is Lipschitz continuous,
as we shall now describe.

Let u be the solution of

%83{& - afzu = 0, z>0
(6) B.u(0,8) = —6(t)
u = 0, t<0.

A consequence of the estimates we will present in Section 2.5 is that the map F relating
sound velocity and boundary value via (5) extends to a map H* — L2

Our first major result is that F' extends to a Lipschitz continuous map from H? to
L2

THEOREM 1.1. Given a velocity ¢ and T > 0, there exist D and r > 0 such that if
60 < H2[O, D], || 5C ||H2[O,D] < r, then

| F(c+ 6¢) = F(c) | ajory < K Nl 8¢l grapo, g -
The constant K depends on the depth D, || ¢l g2po,pp5

Cimin = OSiBSfD C(Z),
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and r.

Our second theorem concerns the differentiability of F. Formally, the first-order
effect of changing the velocity from ¢ to ¢+ éc is to perturb the solution u by du, where
6u is the solution of the linearized problem

1 26c(z
E—;(z—)aftéu - 026u = 63(2))63,521, z>0
(7) 8,6u(0,t) = 0
bu = 0, t <0.

As with the trace 9;u(0,t) there is a highly singular part and a smooth part to 0;6u(0,1).
The progressing wave expansion for §u shows that

0yu(0,t) = constant - §'(t) + constant - §(¢) + v(¢),
We will consider a formal linearization DF' of F' defined by
DF[c]: éc— v(0,1).

In order to determine whether DF' really is the derivative of F', we will estimate the
Taylor’s series remainder

F(c+ éc) — F(c) — DF[c](éc)

for all velocity perturbations éc which are “sufficiently small.”

Our second result — the more significant for applications — is that F' is differen-
tiable as a map H® — L?, and the derivative is Lipschitz continuous.

THEOREM 1.2. Given a velocity ¢ and T > 0, there exists D such that F is

differentiable at ¢ as a map F : H*[0,D] — L%[0,T], and the derivative is Lipschitz
continuous.

More precisely, given ¢ and T > 0, there exist D and r > 0 such that:
(i) For all 6c € H*0, D], || 5c||H2[0,D] < r, the linearization error satisfies

|| F(c+ éc) — F(c) — DF[c](8c) ||L2[0,T] < K| ée ||L2[0,D] || 6c ”H?[O,D] + B|| éc ||i2[o,D]-
The constant K depends on the depth D, |{c||g2po py;
Cmin = OSI?;D C(Z),
and r, while the constant B depends on the depth D, || CHH3[O,D]1 Cmin, and 7.
(it) The derivative depends continuously on c in the sense that if || & — ¢||gpo by < 7
then
IDF[e] = DF[e]| < B € = cllgopp <7

where the constant B depends on the depth D, || c ||H3[0 pp Cmin, and r, and the operator
norm is taken over operators from H?[0, D] to L?[0,T].
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The appearance of || ¢|| s p) in the regularity estimates suggests that F' is differ-
entiable with Lipschitz continuous derivative only as a map H3[0, D] — L?[0,T]. The
smoothness restriction ¢ € H? is a consequence of the singular nature of the boundary
datum f = —é. For smoother f we can relax the smoothness requirement on the ve-
locity at the expense of the appearance of derivatives of f in our estimates. For such a
resuls, see [1].

The particular form of the linearization error estimate has further significance. On
the one hand, the error estimate indicates that linearization is valid only for velocity
perturbations with small H%-norm. On the other hand, it turns out that we can be
much more optimistic about the accuracy of the linearization of F' in the special case
where éc is highly oscillatory. The key point is that the map F is very smooth in
these directions, as we shall now discuss. This observation is significant for the use of
the problem (6) as a model in reflection seismology and helps explain an item of the
conventional wisdom in that subject.

To simplify notation, let ||-||, denote the norm on H¥[0, D], with H°[0,D] =
L?[0,D]. Suppose that the support of 8c is contained in (0,D). We will say that
Oc is oscillatory if

[ se| < el
0 0

‘/Oz&

where ¢ should be thought of as a small number. For our discussion, we will also assume
that the H3-norm of éc satisfies || 6c]l; < R.
If 6c is oscillatory, then

||6c||(2,=/012iz5c'(z) (/OZ&) < u/ozéc

and consequently

For convenience we will write

=elléello,
0

el seliéeloll éelly

[ello < ellell; -

Thus if ¢ is oscillatory we have

Felloll6ell, < I éelio (Il 6elly + 1l 8¢ o)

Y 1
< Neelly (Idell + 118 15 116 1)
1 1
S RINEAH A
3
< eR7||6el|? .

In this case, the estimate of the linearization error in Theorem 1.2 reduces to

| F(e+ 8¢) = F(e) = DF{e](6¢) l|aory < CeR? || 6c|? .
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The point is that the error estimate is superlinear in the H'-norm of éc as long as éc
is oscillatory. Moreover, the oscillation of §c enables us to control the size of the term
CeRs.

As an example of a family of oscillatory perturbations, let x € C§°(0,D), 0 < x <1,
and x = 1 on some interval [z, 21] C (0, D). For ¢ > 0 and a > 1 define

dce(z) = e*x(z) sin g

Then

| o

I8cc |, = O(*~5).

= 0(e) || éex llo

0

while

In particular, if & > 1 then éc. € H', and if @ > 1 then || §c. ||, = 0 as € — 0.

If @ = 3, éc. stays in a bounded set in H® as ¢ — 0. On the other hand, for
1l <a<3,|bcly = o as e —» 0. Nonetheless, since §c. € H', F(c+ 8c.) is still
defined and we have the estimate

I F(c + 6¢) — F(c) — DF[c)(6¢) l|aory < Ce™2 I 8¢ -

Since a > 1, the quantity Ce® — 0 with e. Thus the linearization error is small, even
though the H*-norm (and the HZ%-norm, for 1 < a < 2) of éc, is unbounded as & — 0!
This example illustrates the anomalous smoothness of F' in the directions of oscillatory
perturbations.

This observation helps to make precise an idea central to the mathematical methods
of reflection seismology. One of the tenets of reflection seismology methods in petroleum
exploration is that linearization of the map F' (or its equivalent in more complex models)
is valid as a means of studying the effects of oscillatory perturbations of a smooth
reference medium. This technique is the basis of many of the methods used to analyze
reflection data in oil exploration. The preceding analysis of the linearization error in the
case of oscillatory perturbations supports this belief, and gives a rigorous justification for
the “velocity/reflectivity” dichotomy that makes seismic data interpretation possible.

Another important property of the map F is the effect of slowly-varying perturba-
tions, the obverse of the case we just considered. The effect of slowly-varying pertur-
batizne is related to the smoothness restriction ¢ € H? required for differentiability. To
understand how F reacts to slowly-varying perturbations we will consider the closely
related impedance problem. The issue of regularity for the impedance problem was stud-
ied by Symes in [4]. There he considered the relation between coefficient and boundary
value for Webster’s horn equation:

(n(2)0}; = Oz(n(2)8z))v = 0, z >0
0-v(0,1)

()

[
=
O
—~
o~
—
o~
AN
e
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The quantity n(z) is the impedance. If we set o(z) = 0,logn(z), then we obtain the
more convenient formulation

(0% — 92, — 0(2)0s)
(8) 9;v(0, ¢

S]
|
o

z>0

N’
I
|
o
—~~
o~
~—

1 <0.

S
i
o

In this case the coefficient o and and the boundary value 9,v(0,¢) are related by
the map 7:

70— 0(0,1).

Symes showed that 7 is a C'-diffeomorphism from L2[0,T] to L2[0,TY]; i.e., the relation
is differentiable for impedances in H1.

The velocity problem (6) can be transformed into the impedance problem via the
change of variable

1
(9) :v=/0d§m.

The impedance is given by

This change of variable is called the travel-time transformation. The quantity z in (9)
is called the travel-time, and is the time it takes a signal traveling downward from the
surface to arrive at depth 2.

A salient difference between the velocity problem and the impedance problem is
the effect of the travel-time transformation in “straightening out” the characteristic
curves associated with the differential operators. In the impedance problem (8) the
characteristics are independent of o. In the velocity problem (6) different velocities
give rise to different characteristics, a feature that enormously complicates the proof of
the reguliarity theorem and forces us to require additional smoothness on the velocity ¢ in
order that F' be differentiable. This simplifying effect of the travel-time transformation
(9) reflects a fundamental feature of the map F.

As previously noted, Symes established differentiability on H! for the impedance
problem. By contrast, for the velocity problem a linearization estimate in terms of the
H'-norm of éc was derived only for oscillatory perturbations of a smooth (H?®) velocity.
That no better result is possible is inherent to the velocity problem. While the map F
is surprisingly well-behaved for oscillatory perturbations in the velocity, it is extremely
sensitive to slowly-varying perturbations in the velocity.

The extreme sensitivity of F' to changes in the slowly-varying component of the
velocity is manifest in a phenomenon known as the travel-time shift. The travel-time
shift refers to the possibly catastrophic effect of a small change in the sound velocity.
The arrival times of reflected signals at the surface are determined by the sound velocity
in the medium. On the one hand, a small, slowly-varying perturbation in the sound
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velocity will produce only small changes in arrival times. However, if the reflected signals
are highly oscillatory this can lead to a dramatic change in the surface measurements,
since the highly oscillatory features of the signal will have undergone a shift relative
to their former locations. The additional smoothness requirements of our regularity
theorem serve to ameliorate this unfortunate behavior. For a fuller discussion of the
travel-time instability, see [3] and the references cited there.

The remainder of this paper is devoted to the proof of Theorems 1.1 and 1.2. The
proof is rather lengthy. It is perhaps possible that a shorter proof might be possible
via a study of the travel-time map. However, such an argument would be inextricably
bound to the result for the impedance problem, which has no analog for problems with
multiple wave speeds and most especially for the multi-dimensional wave equation.
This consideration motivates the proof given here as a pattern of attack on the multi-
dimensional problem using various energy estimates.

The proof extends the methods employed by Symes in his study of Webster’s horn
equation in [4], namely, sideways energy estimates and the progressing wave expansion.
Sections 2.2 and 2.3 introduce these ideas. The application of these techniques to the
velocity problem (6) is complicated by the more complex characteristic geometry of
the velocity problem. The heart of the proof lies in Section 2.5, where we use the
sideways energy identity to derive trace estimates for solutions of the wave equation.
These estimates are sharp propagation of regularity results. In Sections 2.6 and 2.7 we
use these trace estimates to compare solutions of the wave equation associated with
different velocities. The remaining sections complete the proof of the theorems.

2. Preliminaries to the proofs of Theorems 1.1 and 1.2.

z.1. Time-depth relationships. In this section we will we will define the depth
D and distance r which appear in Theorems 1.1 and 1.2 and discuss the relationship
between the time and depth domains. We will assume that F'(c), F(c+é6c), and DF[c](éc)
are given for time ¢ in an interval [0, T]. The definition of a related interval in depth z
is somewhat complicated — here we encounter the first of many difficulties caused by
the difference in the characteristics of the wave operators associated with the different
velocities.

Given ¢, let ¢; = ¢ and ¢; = ¢+ 8¢, and for ¢ = 1,2, define the two travel-times

1
a(¢)

Since the ¢; are increasing functions, they have well-defined inverses.
Given a time T', define the depth d by

#i(z) = [ dc

T
d=¢7'(3)-

This defines a “domain of dependence” for the surface measurements on the interval
[0,T]. If signals travel with velocity ¢;, then d is the deepest point a signal can reach
and still return to the surface before time 7.
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Now choose b > 0 and set

D=¢'(5+3)

T b
2 2

With b and D thus defined, suppose that || c2 — ¢1 [| g p; is small enough that

b

[ 62 — 61 || pooo,p) < 3

Then with these choices we have

T+ ¢1(D)
T+ ¢2(D)

T — (D)
T — ¢:1(D)

v v

for all > —b/2.

The depth D is slightly deeper than the depth reached at time 7'/2 by signals
travelling at speed c;. The slightly enlarged depth domain is required in order to
compare signals travelling at a slightly slower velocity c;.

Now we can say how small éc¢ must be in order for the estimates in Theorems 1.1
and 1.2 4o hold. Let ¢, and ¢pq, be lower and upper bounds on the velocity ¢; on the

interval [0, D]: for all z € {0, D],
0< Cmin S Cl(z) S Cmaz-

We will require that éc be “sufficiently” small in H?: We choose r > 0 small enough
that if || c2 — c1 || 2 py < 7, then

(10) 6= b1 oo < oo

(11) || 2 llH2[O,D] <2la ||H2[o,D]

(12) %ci‘m < ciz) < 2Crim for all 0 < z < D, and
(13) le2(z) — c1(2)] € ca(2) + e1(2) forall 0 < z < D.

These assumptions assure us that the characteristics ¢ = ¢;(z) corresponding to the
two velocities are not too far apart and that the surface measurements depend on
comparable depth intervals.

2.2. Energy identities.
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2.2.1. The standard energy identity. Given a velocity ¢(z) and smooth func-
tions u and v, we define the “standard” energy form 7 to be

n= cl—zatu O + O,u 621)] dz + [Ou 0,v + 0,u O] dt
Then
dn = — (OuOv + 0wl u)dz A di.
Now suppose 7,0 < zp < 21, and T = 7 + 2¢(z;) are given, and define I to be
F={(z,t)| o< 2< 2, 74+ 8(2) <t <T—¢(2)}.

We define the operators Dt and D~ by D* = 4(1/c) 9;+0,; these are the tangential

derivatives along the characteristics. If we apply Stokes’ theorem to n over T, then we
obtain

(14) / (D*uD*o) (2,7 + ¢(2)) — / (D~uD ) (2,T - §(2)) =
/T_¢(ZO) dt [0u 0,v + 0,u Opv] (20,1 / dz /T ¢(z t (GuOv 4+ 0w Ou)
T+¢(20) ’ T+é(2)

In the case u = v we obtain the standard identity:

(15) / (Dtu(z,T +¢(2)))” - / (D u(zT - 4(2)) =

T—¢(z0) T—-¢(z)
/ o) dt 20,u(zo,t) 0,u(zo, 1) / dz/ dt 20;u D u.
T4+ (20 T+

2.2.2. The sideways energy identity. Next, for a smooth function u, we define
the “sideways” energy @, on I to be

Q)= [t (B, 0) + o) (2.,

+(2)

and the “sideways” energy form w to be
w =2 [Oiud,u] dz + [(Bu)’ + ¢ (9,u)’] dt
Then
dw = [2cc' (azu)2 —2c4(9,u0 u)] dz A dt.
If we apply Stokes’ theorem to w over I, then we obtain the sideways energy identity:
(16) Quzo) = ["ez) (D*ule,r+6(:)" + [ e2) (D7u(e, T 6(2))’

+ / dz /;:‘: t [2ec (0,u)? — 24 (B.u D))



R. M. Lewis and W. W. Symes — Solutions of the wave equation 10

2.3. The progressing wave expansion. In this section we will discuss the pro-
gressing wave expansion for solutions of the wave equation. Associated with the two
velocities ¢; and c¢; are the two wave operators

1 ., .
L= C?(Z)a“_azz’ Z:1)2'
We will first examine the solution u; of
O;u; = O, z>0
O.ui(0,t) = —6(t)
u; = 0, t <0.

Recall ¢;, the travel-time to depth z for the velocity ¢;(2):

4= [ dcgj—c).

For smooth ¢;, the progressing wave expansion [2] shows that u; will have a jump

1 L
along the characteristic ¢ = ¢;(z) of magnitude a;(z) = ¢Z(0)c?(z). The progressing
wave expansion expresses this in what amounts to a Taylor’s series expansion valid on

one side of the characteristic ¢t = ¢;(2):

ui(z,t) = I;Pk(z)Pk(t — ¢i(2)) + Rns1(z, ).

The Py are given by

0 fz<?
Pk(m):{ zk ifz > 0.

The coefficient po(z) is the jump along the characteristic ¢ = ¢;(z)

3

Sope

po(z) = cZ (0)c? (2),

while the higher-order coefficients are found by solving the second transport equation,
(17) 2p,6; + ped! — ph_y = 0.
We can easily solve (17). From the condition 9,u;(0,t) = —&(t) we find that
Pi(0) = ci(0)pi_1(0),

and so

(18) ) = @ [FOma 0+ [
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The remainder Ry41(z,t) is the solution of

Oi Rvyr = py(2) Pu(t — ¢i(2)), #>0
9:Rn+1(0,1) Pn(0)Pn(2)
Ry 0, t<0.

For convenience, we will denote by a; and b; the first two coefficients in the pro-
gressing wave expansion of u;:

(19) afz) = ci(0)ef(2)
1 1 1 z N/
(20) b(z) = 6 ()| (@) + i) - [ (eF) o]
0
One interpretation of the progressing wave expansion which will prove useful is that

u; 1s the solution of the characteristic-initial-value problem

O;u; = 0, t > ¢i(2)
(21) 0.u;(0,t) = 0, t>0
ui(z, ¢i(z)) = ai(z).
Higher derivatives of u; solve similar problems; we will also use the fact that v; = s,
is the solution of the characteristic-initial-value problem

0,0 = 0, t> ¢i(2)

(22) 0,0:(0,1) = 0, t>0
vi(za¢i(z)) = bi(z),
while V; = 92u; solves
Dl‘/i = Oa t>¢2(2)
(23) a.vi(0,t) = 0, t>0

t
Vi(z,6i(2)) = hi(2),

where the characteristic value k;(z) is the third coefficient in the expansion of u;:

(24) m(e) = 36 () - Foro) 1 [ () 8],

A similar expansion exists for éu;, the solution of the linearized problem (7) about
C = C;.

bu; = —6¢i(2)ai(2)6(t — ¢i(2)) + (bai(z) — bi(2)8¢:i(2)) H(t — ¢i(2)) + R(z,1),

where H is the Heaviside function, and

z éc
6¢; = — —
== %
is the first-order change in the travel-time. The coefficient §a; is
16 1 1
b0i(2) = 5 2k (z) 4 Leb(0) 55
c?(0) 27 Tei(2)

and is the first-order change in @;. For the remainder of the paper we will denote §u,
simply by éu.
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2.4. The idea of the proof. Comparing terms from the progressing wave expan-
sions for us, uy, and du, we see that

(25) | a2 — a1 ”L?[O,D] Cllez—a ||L2[0,D] J

(26) [b2 = b1 || 210,y

In these estimates we are bounding the pointwise values of ¢; and its derivatives in
terms of higher Sobolev norms. We also have

<
< Kllea—a ||H2[O,D]'

2
a2 — a1 — 8a |20 p) < Cllez = i a0,y -
Applying the standard interpolation result for Sobolev norms we obtain

(27) |az — a1 — éa ”Lz[o,p] < Cllez—a ||L2[0,D] [ c2 — e ”H2[0,D]‘
The constant C depends on || ¢; || ;1 [0,D]’

my = min a(z),

D, and r, while the constant K depends on || ¢; ”H2[O,D]’ my, D, and r.

On the one hand, these estimates show that the velocity perturbation §c causes only
a small difference, commensurate with the size of éc, in the values of the u; along the
characteristics ¢t = ¢;(z). Unfortunately, the characteristics associated with the veloci-
ties ¢; have changed as well, which, as described in the introduction, results in a severe
nonlinearity. In particular, uy — u; and uy — u; — 8u do not solve characteristic-initial-
value problems but instead only initial-boundary-value problems with distribution data.
This makes a direct estimate of uy — u; and us — u; — §u inaccessible.

We will instead prove the estimates in Theorems 1.1 and 1.2 indirectly. If we can
show that

(28) |(f, Fle2) = Fle) papom| < K llez— e oy I ooy
for all f € C§°(0,T), then we can conclude that

I F(e2) = Fler) gz < Kllea—erlligpopys

whizh i the Lipschitz estimate of Theorem 1.1.
Similarly, an estimate of the form

(29) (£, Flez) = Fler) = DF[ex)(86)) 1ago 1
< (K N8ell oo, | 8¢ N g,y + BNl 8 122] Il £ 2

for all f € C§°(0,T) yields the estimate in Theorem 1.2.
The idea of the proof, then, is to derive bounds of the form (28) and (29). To this
end, suppose that w solves

Dlw = 0, z>0

9.w(0,8) = f(t), feCs(0,T)
w = 0, 1> T — ¢1(z2).
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If we apply the Stokes’ theorem identity (15) with v = u; and v = w over the region
{(z,1)]0 < 2 < D, ¢i(z) <t < 2¢;(D) — ¢:i(2)}, we obtain the following formulae for
(£, F(ci) pogo,1y-

60 [ @000, = [ @ Dbw(e () s (2,41(2))

(31) /0 "t F(t) Brua(0,1) = /0 "L DFw (2, 62(2) % (uz (2, $a(2)))

D T~¢1(2)
- / dz / dt Byus(z, )0 w(z, t).
0 ¢2(Z)

From these identities we see that we will need to estimate the difference of the traces

of solutions of the wave equation restricted to the two nearby characteristics t = ¢;(2),
¢ = 1,2. This is the subject of the next sections.

2.5. Trace estimates. In this section we present estimates for the traces of so-
lutions of the wave equation along characteristics. The results of this section are prop-
agation of regularity results for the wave equation, with explicit dependence on the
smoothness of the velocity coefficient. These trace estimates show that the solutions of

the wave equation are a great deal smoother than the usual trace theorem would lead
us to believe.

These trace estimates hinge on two facts. The first is that the wave operator in
one spatial dimension z is hyperbolic in both ¢ and z, a consequence of which is the
sideways energy identity of Section 2.2.

The second point is that we can almost factor the wave operator into derivatives
along its characteristics. For ¢ = 1,2, let

1
&
_ 1
Di = __at + az
C;

These are the tangential derivatives along the curves ¢ = 7 4 ¢;(z). Then

cl

(32) DfD; = -0; + 50,
G
J
(33) D;Df = -0; — 20,
One consequence of these identities is the commutator relation
_ _ 2¢i(2)
34 DfD; = D7 Df —=—=0;.
( ) i i 7 1 + C?(Z) t

Equations (32) and (33) indicate that we can factor the wave operator, up to a
lower-order term, into tangential derivatives along the forward and backward charac-
teristics. This fact will enable us to derive sharp estimates in these directions for traces
of solutions of the wave equation.
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We will use the following conventions for the remainder of this paper. Recall the
depth D and r from Section 2.1. Given a velocity ¢;, ¢ = 1,2, let

m; = orgl}zignDci(Z)
M, = Or%aé)%ci(z).

Ci, K;, and B; will represent various constants whose value in the proofs that follow
will change, even from line to line, but will be consistent insofar as

C; = G (” ¢ | gapo,p) >mi’M"’D’T) ’
K, = K; || C; ”H"’[O,D] » My, M‘i) -D7 )y and
Bz' = Bz ”Ci”Ha[O’D],mi;MiaD)r :

The dependence on the maximum M; is mentioned only for clarity since we can replace
M; in this one-dimensional problem with || ¢; || ;1 0.0}

We will also often suppress the domains over which norms are computed. Unless
otherwise noted, the norm of functions of z alone are taken over the interval [0, D],
while those of functions of ¢ only are taken over the interval [0, 7.

Finally, recall b from Section 2.1. Given 7 > —b/2, set T; = 7 + 2¢;(D) and define
the domain T to be

F=T; ={(21)]0<2<D, 7+ ¢i(2) <t < T — ¢s(2)}.

Associated with I' is the sideways energy @, ,:

Ti—¢i(2)

Qurlz) = |

oy (Beu(z,8))? + 2(2) (B.u(z,1))’]

We begin with a general proposition relating the sideways energy @, , of a function
u, the tangential derivatives D} u and D u, and O; u.

PROPOSITION 2.1. Suppose that u is smooth on I'. Then there exists a constant
C; such that

(35) | D ue,+ () |1 py <

Cu [ D7 w2 T = 94020 | gy + 110200, ) g + 1) Bl oo |
(36) | Diw (e, T: = 6u(2) | oy

Cu || DFe a7+ 82 | gy + 18:00,) gy + 1) D i) » and
6 ||, | <

e[| DFuer7 4+ 6D | gy + 1950, 0) oy + 1181 )




R. M. Lewis and W. W. Symes ~ Solutions of the wave equation 15

Proof. Let z € [0,D]. If we integrate the sideways energy form of Section 2.2.2
around the boundary of {({,t)|z < ( < D,7+ ¢;({) <t < T: — #:;(¢)}, we obtain

Quale) = [ dce€) (DrutGr +640) + [ dc () (D7ule, T2 - :(0))’
T4(0) r o
g [0 de 20160 (a6, 0 — 262(0) (0cu(G DBl 1)

and thus

Qur(2) < liellpw || DFu (7 + 6i(2))

’ ,+ || D~ u(z,T; — ¢i(2))
4 (o a2,

Applying Gronwall’s inequality, we arrive at the sideways estimate

2
L2

NETIES

(38)  Qu:(2) <A || Druler+ 6}, +| DueTi- 4 [, + IBiulia]
where
2 ci(¢)
= (||c,~ Hre + | € Loo) exp (“ 142 m! Ll) .

Meanwhile, the standard identity (15) is

(39) /dz Diu(z,7 + ¢ilz /dz Diu(z,Ts - ¢i(2)))”
T;— ¢’l()
/ dt 8,u(0,1)9,u(0, ) +/dz /T+¢.(z dt 20,u(z, 1) 0 u(z, t),
whence

D 2
[z (DFu(z 6(2)))" <

HDu I — ¢i(z

-|-/ dt (0,u(0 t)) 2(8tu(0,t))2
+/ dz /T @ [ (Oiu(z,1)? + o (8tu(z,t))2],

where « is a real number whose value will be chosen shortly. From this inequality we
immediately obtain

2
12

%(uau(o D+ 10 ls) +0* (Qur0) + [ 4 Qu ).

/dz (2,7 + ¢:(2)) 2 < “ D7 u(z,T; — ¢i(2))
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Now we use the bound on @, (z) from (38):

(10) [z (Druie,r 4+ 6:()" <
“ Diu(z,T; — ¢i(2)) i

1
T a? (” 9.u(0,1) ||i2 + | Biw ”iz)
+ a?(1 + D)X [H Diu(z, 7+ ¢i(2))

22 + " Diu(z,T; — ¢i(2))

2
SR AR
Set a? = 1 ((1+ D)X)™". Then (40) yields

2
L2

5 [z (DFu(e,m+6)° < 2| Drue T - ou(2)

1 2 2 1 2
5 (18:u(0, ) 72 + 11 OsullZe) + 5 | Diw |3

from which (35) follows.
In exactly the same way we can start with (39) and arrive at (36):

/ODdz (Di_u (2,T; — qu,(z)))2 <
Ci[| Drute, + 6i(2)

2
o H 1900, 13 + 101wl

Substituting this last estimate into (38) we obtain

| Dfu(z,7 + i(2))

2
Qurlz) S G o 1100, 0) I3 + 2wl
which is (37). O
Recall u;, the solution of (6) with ¢ = ¢;. We will use the preceding proposition
with 7 =0 to bound the energy of u;, 0;u;, and du; on vertical strips.
PROPOSITION 2.2. There exist constants C;, K;, and B; such that for all z € [0, D],

2¢i(D)—¢i(z2)
(41) /() dt (Bui(z,1)) < O
@i(=z
2¢:i(D)—¢i(z) 2
42 / dt (9%ui(z,1))" < K;
(42) " CAHED)
26:(D)~4:(2)
(43) Lo @ (@an)" < B
iz

Proof. In Section 2.3 we saw that u;, dyu;, and d2u; solve the characteristic-initial-
value problems (21) — (23), where the values along the characteristic ¢ = ¢;(z) are
explicitly known. This together with (37) yield (41) — (43). O

The estimate (41) shows that the map F : ¢ — 9;u(0,1) extends as a map H' — L.
Thus the boundary value d;u(0,t) in problem (6) with distribution datum is defined for
velocities in H'.
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The estimates of the Proposition 2.1 can be both simplified and strengthened for a
class of solutions significant to our proof

PROPOSITION 2.3. Suppose that u is smooth and that u vanishes fort > T — ¢1(z)
Then there exists a constant C; such that

(44) | Dfu(z+ ¢i(2))

L"’[O,D] S C’ [” azu(Oat) ||L2[0,T,'] + ” Di u ”Lz(p)]

(45) H Qi

< Ci |l 8:u(0,1) |l 2j0 7y + I D e || 2
sy S G100 oy + 1B e

46) | Diu,. o S Cil8:u(0,8) ||y +5up || B u(z, 0 + 6i(2)) ooy
L=(T) o>T
Proof. In Section 2.1 we arranged matters so that

Ti~ ¢i(2) 2T — $1(2)

for all 0 < 2 < D, so Dj u(z,T; — ¢i(z)) = 0. The estimates (44) and (45) then follow
from (35) and (36).

In order to bound the L*-norm of D; u, we begin with (32). For (z,t) € T, let
t = 0 + ¢i(2). From (32) we have

1

—(D+u—D u) -0

/
c.
+ -, — G
c; z2

iU,

which we write out as an ordinary differential equation along a characteristic

1
- D7 u(z,0 + ¢:(2))] + 5o Dru(z, o+ 6i(2)) =

lc
§iju(z, o+ ¢i(2)) — Oy u(z, 0 + ¢:(2)).
An integrating factor for this differential equation in D u is cz%
d L 1
7 @07 u(z 0+ 6:2)] = () )DFu(z,0+ () ~ F (B u(z, 0 4 6i(2))

Since the depth D is deep enough that Dy u(D,o + ¢(D)) = 0, upon integration we
obtain

c?(z)D; u(z,t) = /dC

N||—‘
Np—l

)Dfw (¢, 0+ ¢i(C)) — 2 (¢)Diu (¢, 0 + ¢i(())

and thus

| D7 ey < Cisp [| D a0+ 6102)

o) + || O u(z, 0 + ¢i(2)) 22001
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Then (46) follows from (44), since the latter assures us that

sup | D3 u(z, o+ 6(2)) [ gy < s [10:000,8) Doy +11 Gl

a

We will now begin to apply the preceding estimates. Recall w, which is the solution
of

Dl w = 0
(47) 9.w(0,t) = f(t), fe€Cs(0,T)
w = 0, t>T — ¢1(2).

PROPOSITION 2.4. There exist constants Cy and Ky such that
(48) | Dfw(zr+ 612 | gy < CollF i
(49) k|, < CllFlon
(50) | D7, < ColF N
(51) | Osw (2,7 + ¢1(2)) 2oy < Cr I f 20,17
(52) | DrDrw |,y < Kl f s

Proof. The bounds (48) — (50) follow from Proposition 2.3. The estimate (51)
follows from (48), (50), and the relation 9, = ¢ (Di" — Df) :

To derive (52), we begin with the following relation, which is a consequence of the
commutator relation (34) and 9; = %cl (Df' — DT ) :

proivies G g0 5 (48)'- (o] aw

1

3
An integrating factor for this equation is ¢ (2):

d

- [c%(z)Dl‘D;w (z,7 + ¢1(Z))}

cﬁ(z) [g (Cit;)z _ (l)"(z)] dw (2,7 + ¢1(2)).

Integration then yields
DI DT w(z,t) =

2 [ dde |3 (4@ 1y
it [ac o) [5 (C%(O) -(2) (o] 00 (¢, + 4(0)
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Then from (51),
| D7 Drwl),., < Kill £ e

which is (52). O

We can also estimate traces along curves which are not characteristics; in particular,
we can obtain trace estimates for solutions associated with ¢; along the characteristics
associated with ¢;, and vice versa.

PROPOSITION 2.5. There exists a constant Cy such that

(53) | DFw (= 82N | gy < Collf ooy
(54) 100w (2, 62(2) 2oy < Crll Fllpapory

Proof. We will prove (53) first. Apply Stokes’ theorem to the standard energy form
of Section 2.2.1 over the region {(z,t)]0 < 2z < D, ¢5(2) <t < ¢:1(D)+ $2(D) — ¢1(2)}.
Since ¢1(D) + ¢2(D) — ¢1(2) 2 T — ¢1(2) for 0 < 2 < D,

Diw(z, ¢1(D) + ¢2(D) — ¢1(2)) =0
and we obtain

#1(D)+¢2(D)
A dt 9,(0, 1)dw(0, 1)

= [a= (Dfw(e,8a(2)” + (1)) = (B4()7) (B (3, du(2).
Since DI — Dy = (¢} + 41) 8, the preceding yields
dt 0,w(0,1)9,w(0, 1)
= [/ (D50, 6a2)" + 2 (D (2, 60(4)) ~ Di (2, 6()°

> [ (Dfw (s, 0a(e1)” ~ 25222 (Do (2, 622)” + (D5 (=, a(2))”)

/¢1 (D)+¢2(D)
0

By hypothesis (13),

$r— s L
¢1+ o)~ 4
%/ODdz (D«jfw(z,sﬁz(z)))2 < /ODdz (wa(z,¢z(z)))2+/0¢1(D)+¢2(D)dt 8w (0, 1)8w(0,1).

The estimate (53) then follows from the estimates in Proposition 2.4. To obtain (54),
note that Df — DI = (¢, + ¢}) 8; and use (43) and (53). O
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Using Propositions 2.4 and 2.5, we can estimate the traces of solutions in which w
appears as a datum.
PROPOSITION 2.6. Suppose that v solves

O,v = a(2)0w
(55) 0,v(0,t) = 0
vo= 0, [2 Z T— ¢1(Z),

where a(z) is a smooth function.
Then there exist constants Cy and K, such that

(56) | DFo oo+ i) | ooy S Collaliago oy I f oo
(57) J@i], ., < Collalligo 1 o
(58) ”Dz_””Lw(F) < K ||a“L2[0,D] ||f”L2[0,T]
(59) 10w (2, 81(2) lpepopy S Callallpagop I £ lzopory-

Proof. The bounds (56) — (58) follow from the estimates in Proposition 2.3, 2.4,
and 2.5. The key is that the bounds in Propositions 2.4 and 2.5 for w enable us to
bound the L?-norm of d;w and thereby O; v both on I' and along characteristics. The
proof of the noncharacteristic trace estimate (59) follows the same line of argument as
the proof of Proposition 2.5. O

Finally, there is one other function whose traces we will need to examine. This

function arises when integrating the function w along characteristics. For (2,t), 0 <
z < D, define

(60) W)= [ dcw(¢,t = i(z) + hi(0)).

This is the integral of w along the characteristic through (2,t). As we would expect,

it is one degree smoother than w in one characteristic direction and as smooth as w in
the other.

PROPOSITION 2.7. There exist constants Cy and K, such that

(61) | DEDIW (27 + 61D | oy S CollFllizpom
(62) | DrDrW |,y < Kl fllmpom
(63) | DFow (2.7 + 61D | ooy S Coll Fllzrpom
(64) | DT (2.7 + 1) gy < Kl F Uy

Proof. The bounds (61) and (63) follow from

DiDiW(z,t) = Dfw(z,t)
DfatW(Z,t) = 8tw(z,t)
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and the estimates in Proposition 2.4.

L*-bounds on Dy W and Dy Dy W follow from the fact that if

Ule,t) = [ dCu(Cyt - du(2) + 41(0),

then

DIU(z,1) = clzz) /

Finally, the bound (64) follows from the identity

¢ (Ou Gyt = 1(2) + 1(0)) + e (O)Dru (¢t — d1(2) + $1(0)).

D

Dy oW (z,t) = Df (%l (pf - D;)) W(z,1)

= 2 (Drule,t) = DEDTW(0) + 2 (w(z ) + Dy Wz, 1)

2.6. Estimates for the difference of traces. The estimates in this section are
central to the proof. Here we will derive estimates for the difference of solutions of
the wave equation restricted to two nearby characteristics. We will do this by changing
variables from (z,t) to the coordinates corresponding to the characteristics ¢ = T+ ¢i(2).

We then apply the trace estimates from the previous section, which control derivatives
in these directions.

To this end, let

€=|¢2— 1|0, -
For 0 < 2 < D,
z 1 1 1
_ =1 22l 2 Dlle —
|$2(2) — ¢1(2)] o o alSlaal. [ea—erllge,

so invoking assumption (12) we obtain

(65) e=|l¢2— ¢ ||L°°[0,D] SCillez—all..

Now we will show that the difference of the traces of solutions of the wave equation
along the two nearby characteristics t = ¢;(2), 7 = 1,2, is also small.
PROPOSITION 2.8. Suppose that u is smooth. Fori=1,2, let

Ai=_swp ([ Dfuter+ )|, +[ Dru e+ ()] )
= sup (| PFDFu e, + 620 ||, + || DF Dy (2,7 + ¢i(2) ot

| D7 Dfulz,7 + i(2))

. ” D; D7 u(z,7+ ¢:(2))

)
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Then
(66) | u(z, $2(2)) — ulz, 1(2)) || 20,0 < CiAill €2 = 1 20y
and
(67) lu (2, 62(2)) — u(z, ¢1(2)) — (b2(z) — ¢1(2)) Qs (2, $1(2)) || g0,y

<Klli|lez—a “?I,Z[O,D]'

Proof. We will use the following integral form of Holder’s inequality. For 1 < p < oo,

(68) {/I/u(z,t)dtpdz]% </ [/|u(z,t)|p dz]%dt.

For simplicity, we will prove the case where i = 1; the case 7 = 2 is the same,
mutatis mutandis. Let u(2) = ¢2(z) — ¢1(z). Then

| u(z, ¢2(2)) — ulz, ¢1(2)) || 2 = [/ODdZ (/“(Z)MI(Z) dt atu(z’t>)2]

$1(2)

=

= l/ODdz </q:g+¢l(2) dt clgz) (Df'u(z,t) — DT u(z, t)))? 2 .

Now make the change of variable from ¢ to the 7 coordinate defined by the charac-
teristics: ¢ = 7 + ¢(2). If we do this and apply (68), we obtain

| u(z, $2(2)) ~ u(z, $1(2)) Il 2
= [/ODdz (/Ou(z) dr C1gz) (Di*‘u(Z,'r + ¢1(2)) — Dy u(z,7 + qbl(z)))) ]

< Nlerllym llule sup_ (| Dz + (=)

2+ | D ulz, 7 + 61(2))

)

Then from (65),

Il U(Z, ¢2(z)) - u(z7 ¢1(Z)) ”L2 < ClAl ” C2—C ”Lz .

The proof of (67) follows exactly the same path, starting with the identity

Lol V]

C

O = (DD — DI DY — D} D} + D; DY),

|

which follows from 0; = ¢;(Df — D;). We then proceed as above in order to bound

(21 94(2) = ulz, 81(2)) - (6a(2) = (=) Oz, () = [

dr/r ds 0iu(z, s).
e T 0 (2,3)
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0
Next we apply the previous proposition to the functions considered in Section 2.5.
PROPOSITION 2.9. There exist constants C; and K; such that

(69) | w (2, $2(2)) — w (2, $1(2)) “L2[0,D] < Giflez—a ||L2[0,D] | f ||L2[0,T]

(70) || DT w (2, ¢2(2)) — Dy w (2, 12
(T1)  [10:W (2, ¢2(2)) — OW (2, ¢1 (=

and

azy W (0202 =W (2,01(2)) = (63(2) = 63(2)) OW (2 1(2) o

<Kiflez—a ”f:P[O,D] | f ||L2[O,T]'

)

) ||L2[o,D] < Glle—a ”L"’[O,D] I f ||L2[o,:r]

L2[0,D] < Kijle—a HL2[0,D] I f ||L2[0,T]

)
)

If v solves
Ov = a(z)0w
(73) 0,v(0,t) = 0
v o= 07 t 2 T — ¢1(Z),

where a(z) is a smooth function, then there exists a constant K, such that

(74) lv (2, ¢2(2)) = v (2, 61(2) lp2po,pp < Kzl @ llego o | £ llzpo -

Proof. We apply Proposition 2.8 and the trace estimates of Section 2.5.

To obtain (69), we use the estimates on Df w and Dj w in (48) and (50). Estimate
(70) follows from (54) and (52), since Df Dy w = (¢} /c?)d,w (see (32)). Similarly, (71)
follows from (61) and (62). The second-order estimate (72) follows from Proposition
2.7.

Finally (74) follows from (56) and (58).

O

2.7. A bound on area integrals. Besides estimating the difference of traces
along characteristics, we will also need to estimate differences of the form

T-¢1(2) T—¢1(2) )
/dz/ " dt a(z) Oyw O3 uy — /dz/ dt a(z) Oyw 0;,u;.
2(z

Here we will see the first application of the estimates for the difference of traces from
Section 2.6. We have the following estimate.
PROPOSITION 2.10. There exists a constant By such that for any smooth a = a(z),

dz

T-¢1(2) T—¢1(2)
dt a(z) Ow attuz / dz/ dt a(z) Oyw 8ttu1
$2(z) #1(2)

SBillea—callgllallz I fllz-

(75)
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Pezof. Let v be the solution of

O,v = a(2)0w
0v(0,t) = 0
v = 0, t>T— ¢1(Z)'

Now we apply the Stokes’ theorem identity (15) to the two regions

{(2,1)]0 < 2 < D, ¢i(2) < t < 26i(D) — ¢i(2)}
for 2 = 1,2. In the case i = 2 we have
T- 4)1(2)
/dz/@(z) (2)04w Oluy = —/ dz Df v (2, ¢o(2)) D ug (2, do(2)) .
On the other hand, since

1 1
Dzw:(D2 ——-Dl)’w: (—2—6—2) Bttw
1

s

the Stokes’ theorem identity (15) in the case i = 1 yields

T—¢1(z) T— ¢1(2 )
/ / ) dt a 8tw Bttul / dZ/ (@) Dg — Dl ) + Dl )’U 8tt’U/1
1\2 P1(z

= / dz /T h ( c1—2) 0%v 0wy ——/Odz Div (z,¢1(2)) D 0y (2, 61(2)).

1(2) 1

Recall from the progressing wave expansion that 02u; (2, ¢1(2)) = bi(2) (see (22)).
Then we may integrate by parts in ¢ to obtain

[ [ -
[ (% . c%zz)) 000 (2, 61(2)) by (2, 61(2)

/ d /T hte L) o2,
—_ YA ¢1(z) 02 c—2 1% tttul.

1

From the formula (20) for b, and the trace estimate (59) for d,v (z, $1(z)) from Propo-
sition 2.6, we obtain the bound

[ (505~ 75 ) 2D (5 1(2)

Meanwhile, from the sideways estimates (42) and (57) we obtain

T qSl (Z 1
( —2) 8{0 8t3ttu1
$1(=) C2 G

< K, || C2 —C |IL2 ” a ”L2 ” f HL2 .

dz

SBiflea—allllellzllf -
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Thus

dz S Billes—ellpa llallza Il flige -

T—¢ (z)
( ) Bttv 8t2tu1
$1(z)

Meanwhile, since u; (z, ¢:(z)) = ai(2),

/(]DdzD+v (2, $2(2)) Df uq (2, ¢ (2) —dezD+U (2 ¢1(Z))Di'-ul (z,91(2))
_/dza2 )D¥ v (2, ¢o(2 /dza1 )Dfv (2, ¢1(2))
:Adzwrﬂh 2)Div (2 /duz $2(2)) — v (2, $1(2))]

Applying (56) to the first integral and (74) to the second, we obtain

2, 62(2)) D (2, 64(2)) ~ [ 42 Dfv (2, 61(2) D (2, 2(2))
<Kifle—a ||H1 lallze I £llzz -

3. The proof of Theorem 1.1: Lipschitz continuity. We will now prove Theo-

rem 1.1. The progressing wave expansion tells us that along the characteristics t = ¢;(z),
1 =1,2,

ui(z, $i(2)) = ai(2).
Thus (30) and (31) become

/0 " f@) F(a) = /0 2z d\(2)D}w (2, ¢1(2))

and

/ dt f(t) F(cp) = / dz ay(2)DFw (2, ¢2(2)) +/ dz/ Tt )dt Oyue O w.

Once again we rely upon the fact that

1 1
Dzw: (DZ _Dl)w= (_2__2) ath

2 G

We use this and integrate by parts in ¢. Bearing in mind that w = 0 for ¢t > T — ¢,(2)
and Oyu; (2, #2(z)) = ba(z), we obtain

T—¢1(2) T- 4’1(2’) 1
/dz/ dt Oyug O w = / dz/ - = 6”10 RIS
$2(z) $2(2) Cz Cq

T- ¢1(2) 1 1 9
= /0 dz (c%(z) - cf(z)) bo(2)0rw(z, dao(2)) /dz Az(z) (Cz q) 0w O us
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and so

[ 50 i) = [ dz (=) Dfw (2, 82(2)

p (1 1 T-he) 1 .
e (g~ ) ot = [ [ (= vt

We also have

/dzaz(z)D w (2, ¢alz ]dza1 )Dfw (2, 1(2)) =

[ [64(z) — (N D w (2, 6a(2)) — [ dza(2) b (2, 6a(2)) — w0 (2. 64(2)].
Thus

(16) [ dt 7(2) [F(e2) = Fler)] =
42 la4() ~ (1)) Dfw (2, 62(2)) — [ dzal(z) o (2, (=) — w (2, 61(2)

+ /0 dz (%— (z)) 2 (2) 0wz, da(2)) — / 2 /’;f(zm(z) (__ é ) —

We can bound the terms in (76). From Proposition 2.5 we have the following bound
on the first term:

D
| dz las(z) = a4()) Dfw (2, 42(2)

Using (69), we bound the second term in (76) as

SCillea=cillgn | fllze-

D
JCZCIER RS EEINE)) EE Y PR T

The third term on the right-hand side of (76) is bounded using the expression for b, in
(20) and the trace estimate (54) for dyw in Proposition 2.4:

/oDdz (03%—2) - Ei%?)) ba(2)Bew(2, 42(2))

Finally, we estimate the area integral by means of the bounds on the sideways
energy of Jyuy and Jyw given in (42) and (49):

T- ¢1(Z) 1
/ dz/ (—— - —) Opw Ouz
$2(2) cf

Since we assume that ||c; — ¢ || < r, we may replace the constants K, with
constants K; in the preceding bounds. We conclude that

T
[ a0 (7o) - P
for any f € C§°[0,T7], from which it follows that

[ F(c2) = Fler) Iz S [Killez —erllpe + Crlles —er || gl -
This proves Theorem 1.1.

S 1{2 |I Cy — Cy I|L2 || f HL2 .

SKalleca—cillp2ll fllge-

<[Killea =iz 4+ Cillca—en|lgm) Il £ 1l 2
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4. The proof of Theorem 1.2: Regularity.

4.1. A formula for DF[c¢;](6c). We begin with a formula for DF[¢;](éc).
PROPOSITION 4.1.

(77) (f, DF[e1)(6)) ooz = / "z 80 (2)DFw (2, 6n(2))
—(1 256(2) z wiz z
[ (~at00) + 5 0(2)) o ()
T—¢1(z clz
+/ /(ﬁl(z) 251 Oyw(z,t)0%uy(2, ).

Proof. We will need the following integration by parts identity. Suppose b is a
smooth function such that 5(0) = 0. Then we claim that

(78) ADdz (cl%b),( YDfw ( /dz ci(2)V'(=z e )8tw (2, 91(2))

Identity (78) is proved as follows. From (32) we have

: al?) w z)) — —d— Lw(z z =
[/ @0e) | $E 000 o1 8:) — D70 (612 =0
Integrating the second term produces
- /ODdz c%(z)b(z)%Dl_w (z,01(2)) =
D ci(z 1
[t (55200 + ) Dru ).

1

Thus,
=t o) | S0 () = go0rw e o) -
/oDdz ( %>(Z) (2)Dw (2, ¢1(2)) + A dzcl%(Z)b'(Z)wa(Z,‘ﬁl(z)) =

and so

[ (c%)'(z)b(z)pw(z 61(2)) + ODdZCl% (W (D7 w (2 61(2))

which is (78).
We now turn to deriving (77). Applying the Stokes’ theorem identity (15) and a
straightforward limiting argument to handle the singular nature of the integrand, we
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obtain
T D
(79) /0 dt f(t) 8,6u(0,t) = / dz (60 — b168) (2) DY w (2, $1(2))
T- ¢1(z) 26c (2) 2
/ /qsl(z) c1 ) Oyw(z,t)0;u1(z, 1)

We then apply (78) to obtain the following:

/Oudz (5169) (2) D} w ( / dz cl% (cl—%blw)'(z)q?—z)atw (z,61(2)).

However, we see from the formula (20) for b, that

SO

) (Fno0) () = ) (e @ut@60) - o 5 ) )
Thus

/ﬁzz (b16¢)’(z)D1+w(z,¢1(z))=/ ( "(2)86(2) - 26c(z),

ci(2)

Proposition 4.1 then follows from this latter equality and (79). O

bi(2)) O o, ().

4.2. Continuity of DF. Proposition 4.1 shows that DF[c]: H* — L? for c ¢ H?,
since we can easily use the trace estimates in Proposition 2.4 to derive a bound

|(f, DFIEI(E0) apo,y| < K Nl 8l | £ 12

for all f € C§°[0,T], where K = K (|| c ||H2[0,D] ,cmin,D). However, in order to show
that DF'[c] depends continuously on ¢, we must require more smoothness of both the
velocity and the admissible perturbations éc. The following is part (i) of Theorem 1.2.
PROPOSITION 4.2. There exists a constant By such that if || c2 — ¢ “H2[0,D] <r,
then
| DF[ez] — DF[a1] || < By [ e2 — e || gepo,py »

where the operator norm is taken over operators from H?0, D] to L*[0,T].

Proof. We begin with the identity (79) from the proof of Proposition 4.1: For
i=1,2,

T D
/O dt £(¢) 8,6ui(0,1) = / dz (8a; — bi5g:) (2)Df w (2, $i(2))

T- ¢1(z 25
+/ dz /'(z c ))atw(z $)0%u;(2,1).
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Then
(f, (DF(c2] — DF[c1]) (6¢)) a0y =
/Ddz bag — b26¢2)/(z) w (2, ¢a(2 / dz (bar — b16q§1) (2)D}w (2, 1(2))

T— ¢1(z) T— ¢>1(z)
+/ dz/ 8tw6tu2 /dz/ Btwatul
$2(2) $1(2)

After adding and subtracting a term to the first difference we can integrate to
obtain

D D
/0 dz (8ay — by6s) (2) D w (2, $a(2)) — /0 dz (8a1 — bi8¢1) () D w (2, $1(2))
= /ODdz {(&zz — b28¢2)'(2) — (a1 — bl5¢1),(z)] Dfw (2, ¢1(2))
— [ (a1 — b1661)"(2) [ (2, 62(2) = w (2, 62(2))].

Applying the trace estimates in Propositions 2.4 and 2.9 we can bound the preceding:

/ODdz (6az — by862) (2)DFw (2, (2 / dz (6ay — b16¢1)'(2) Df w (2, ¢1(2))
S Killea =il el 1 £l -

Meanwhile, from Proposition 2.10 we obtain the estimate

Ty ( T~¢1(2) 26
dz l atw O2uy — / dz / 1 —56-8tw6tu1
¢2(2) $1(2) a
T-¢ (z) T—¢i(z) 92§
dz 1 Btw Bttuz / dz / 1 dt —Scatw o2 Uy
#2(2) $1(2) C3
T-¢ (2) 26 26
dz l (_c — _c) Oyw 82 uy

< B || ¢z = lge ll 6elpa Il fllza-
Thus we conclude that
(£, (DFlea] ~ DFIer]) (56)) gagom| < Brllea — 1 s | 8¢ lla 1 £ 1
for all f € C§°[0,T], and therefore

| DF[c2] = DF'[e1] || < Bifl ez — ex ||z -
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4.3. Estimating the linearization error. From (76) and (77) we obtain
(80) (f, F(cz) — F(er) — DF[e1}(6¢)) 1210,y =
[z (a2~ as ~ 8a) (:)DFw (=, 6a()
D

+ /0 dz 6d/(z) [D}w (2, 62(2)) — Dfw (2, 1(2))]

— [z () [ (2, 62(2)) — 0 (2, 61(2)) = (a(2) = 61(2)) O (2, ()]

— [ al(2) [62(2) — 6a(2) — 66()] 0w (=, 61(2)

B Dz 11 26¢(z) D00 (2. bl

% (g~ a0 + ) o e
D ez

+ [ %((-)l(bz(z) bi(2)) o (2, da(2))

+ /D 250 2) (0w (2, $2(2)) — Baw (2, 1(2))]

1

T-¢1(2) 28 T-¢1(2) 26
+/ dz/ dt —Eatwatug—/dz/ —Catw O2uy

#2(z)

T ¢1(Z) 1 26
_/dz/ (———2+—3—C>atwaftu2
é2(z) S ¢

Estimates for most of these terms are immediate. From (27) and (53),

<Cillee—allpllea—ellgll flizz-

/01le (az —a; — 5a)'(z)D;w (2, ¢2(2))

Integration by parts and the trace difference estimate (69) yields

w (2, ¢2(2)) — Dfw (2, ¢1<z>>]| <K llez—eillga ez = el |/ 1o

From the trace estimate (51),

/ dz ay( — $1(2) — 66(2)] 0w (2, $1(2))

< Killea—enllza Il S e -

The next term in (81) is bounded using the definition of b, in (20) and (54):

e (35 Sy ) oo et

Using (26) and (54), we have

<Killee— ¢ “22 I fllze -

/D 25c z) = by(2)) 0w (7, ¢9(2))

SKifla—alplle—clglfle-
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Finally, from (41) and (49), which bound the energy of d;u, and w on vertical strips,

we have
T-¢ (Z 25
' ( )@wamz
$2(2) 3 Cl c

dz <Killee—ci |5l fllge -

Three terms remain. The first of these is
81 [ dzal(e) (e 82(2) — 0 (2, 1(2) ~ (82(2) - 63(2)) B 2, 64(2))]
Recall the function W (z,¢) from (60) and note that
W (2 h(2) = iz
W (2,02(2)) = (b= 62) (AW (2, a(2)).

This enables us to integrate (81) by parts:

/ODdz ai(z) [w (z, d2(2)) — w (2, 1(2)) — ($2(2) — $1(2)) Dew (2, $1(2)))]

- [ z)[ 2,6a(2)) — (62— 61)' ()OI (2, 6(2))
- [asae) d— £ 41(2))) — [ dz al(2)66(2) = (AW (2,64(2))

= [ a2 W (2, 6a(2)) = W (2, 84(2)) — ($a(2) — 41() O (=, 4(2)]
+ / dza}(z) (2 — ¢1 — 64) (2) BW (2, 1(2))

- / dz d(2) (¢2 — b1 — 66)'(2) AW (2, 6a(2))
+ [z a(2)54/(2) W (2,62(2) — W (2, 61(2)).
We can estimate each term in this latter expression. By the second-order trace difference
estimace (72),
D
[ W a1 6s2) = W (a2~ (8n(2) — (=) 00 (2,120

< I{l ( 1 )III

ler=crlal £l

Next, the definition of W and the bound on d;w (2, #1(2)) in Proposition 2.4 enable us
to bound 9;W (z, ¢1(z)), whence

| [[d= (=) (82 1 — 66) (2) O (=, ()

<Killa—callbl flle.



R. M. Lewis and W. W. Symes — Solutions of the wave equation 32

Finally, from (71) we obtain

D

[ dza{(2)84(2) [OW (2, ¢2(2)) = OW (2,61(2))]| < Ki |l e2 — exllza Il f 2 -

Thus,

Uz a(2) [0 (2, 6a(2)) — w (2, 61(2)) — 66(2) Do (2, 61(2))]

0
<Billea—ci |zl fllze-

Next we will estimate

[ 4= 2502 B (o, ) — B (o, )

This is straightforward. Since

=% (01 - D7) = 5% (g~ 7).

1+ ¢

we have

/ODdz 256( ) (Z) [8{11) (Z ¢2(2’)) atw (Z, ¢1(z))]

ci(2)
D 26c z) cl(z)
0 05 $2(2)) = D} w (2, 41(2))]

(
D 25c a(z)e(z) _al?)
/ (q(z) Fels) 2 ) w5l
D c Cl Z - .
./ 26 é ) [Dl w(z,¢2(z) - D1 w (Z,(ﬁl(z))]

)
I —

[D+w z,

For the first term in this latter identity we integrate by parts and apply (69). The third
term we bound using (70); the other two terms are bounded by the trace estimates in
Propositions 2.4 and 2.5. We arrive at

0 25,4 o, ) — = ¢1<z>>]|
< K1 || ez —ci|lpallez—erllg |l fllze-

Finally, applying Proposition 2.10 to the difference of the area integrals we obtain
the bound

dz

T—¢1(2 ) 25 T-¢ (2) 25
1 catwaﬁuz / dz / it 220w 02y
¢

2(2) 1(2) CI
g Bil|les— ¢ ||L2 1 llge -
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The conclusion is that

(£, F(e2) = Fler) = DF[e1](66)) papo |
< [Billes— e lzs + Kulles = exllgall e — e llgza] | £ 112

for all f € C§°[0,T]. This estimate, the continuity of F', and the continuity of DF yield
Theorem 1.2.
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